Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Front Neurosci ; 18: 1332701, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38629049

RESUMEN

Visual crowding, the phenomenon in which the ability to distinguish objects is hindered in cluttered environments, has critical implications for various ophthalmic and neurological disorders. Traditional methods for assessing crowding involve time-consuming and attention-demanding psychophysical tasks, making routine examination challenging. This study sought to compare trial-based Alternative Forced-Choice (AFC) paradigms using either manual or eye movement responses and a continuous serial search paradigm employing eye movement responses to evaluate their efficiency in rapidly assessing peripheral crowding. In all paradigms, we manipulated the orientation of a central Gabor patch, which could be presented alone or surrounded by six Gabor patches. We measured participants' target orientation discrimination thresholds using adaptive psychophysics to assess crowding magnitude. Depending on the paradigm, participants either made saccadic eye movements to the target location or responded manually by pressing a key or moving a mouse. We compared these paradigms in terms of crowding magnitude, assessment time, and paradigm demand. Our results indicate that employing eye movement-based paradigms for assessing peripheral visual crowding yields results faster compared to paradigms that necessitate manual responses. Furthermore, when considering similar levels of confidence in the threshold measurements, both a novel serial search paradigm and an eye movement-based 6AFC paradigm proved to be the most efficient in assessing crowding magnitude. Additionally, crowding estimates obtained through either the continuous serial search or the 6AFC paradigms were consistently higher than those obtained using the 2AFC paradigms. Lastly, participants did not report a clear difference between paradigms in terms of their perceived demand. In conclusion, both the continuous serial search and the 6AFC eye movement response paradigms enable a fast assessment of visual crowding. These approaches may potentially facilitate future routine crowding assessment. However, the usability of these paradigms in specific patient populations and specific purposes should be assessed.

2.
Behav Res Methods ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448726

RESUMEN

Eye movements offer valuable insights for clinical interventions, diagnostics, and understanding visual perception. The process usually involves recording a participant's eye movements and analyzing them in terms of various gaze events. Manual identification of these events is extremely time-consuming. Although the field has seen the development of automatic event detection and classification methods, these methods have primarily focused on distinguishing events when participants remain stationary. With increasing interest in studying gaze behavior in freely moving participants, such as during daily activities like walking, new methods are required to automatically classify events in data collected under unrestricted conditions. Existing methods often rely on additional information from depth cameras or inertial measurement units (IMUs), which are not typically integrated into mobile eye trackers. To address this challenge, we present a framework for classifying gaze events based solely on eye-movement signals and scene video footage. Our approach, the Automatic Classification of gaze Events in Dynamic and Natural Viewing (ACE-DNV), analyzes eye movements in terms of velocity and direction and leverages visual odometry to capture head and body motion. Additionally, ACE-DNV assesses changes in image content surrounding the point of gaze. We evaluate the performance of ACE-DNV using a publicly available dataset and showcased its ability to discriminate between gaze fixation, gaze pursuit, gaze following, and gaze shifting (saccade) events. ACE-DNV exhibited comparable performance to previous methods, while eliminating the necessity for additional devices such as IMUs and depth cameras. In summary, ACE-DNV simplifies the automatic classification of gaze events in natural and dynamic environments. The source code is accessible at https://github.com/arnejad/ACE-DNV .

3.
Disabil Rehabil ; : 1-22, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563867

RESUMEN

PURPOSE: People with homonymous hemianopia (HH) benefit from applying compensatory scanning behaviour that limits the consequences of HH in a specific task. The aim of the study is to (i) review the current literature on task-specific scanning behaviour that improves performance and (ii) identify differences between this performance-enhancing scanning behaviour and scanning behaviour that is spontaneously adopted or acquired through training. MATERIALS AND METHODS: The databases PsycInfo, Medline, and Web of Science were searched for articles on scanning behaviour in people with HH. RESULTS: The final sample contained 60 articles, reporting on three main tasks, i.e., search (N = 17), reading (N = 16) and mobility (N = 14), and other tasks (N = 18). Five articles reported on two different tasks. Specific scanning behaviour related to task performance in search, reading, and mobility tasks. In search and reading tasks, spontaneous adaptations differed from this performance-enhancing scanning behaviour. Training could induce adaptations in scanning behaviour, enhancing performance in these two tasks. For mobility tasks, limited to no information was found on spontaneous and training-induced adaptations to scanning behaviour. CONCLUSIONS: Performance-enhancing scanning behaviour is mainly task-specific. Spontaneous development of such scanning behaviour is rare. Luckily, current compensatory scanning training programs can induce such scanning behaviour, which confirms that providing scanning training is important.IMPLICATIONS FOR REHABILITATIONScanning behaviour that improves performance in people with homonymous hemianopia (HH) is task-specific.Most people with HH do not spontaneously adopt scanning behaviour that improves performance.Compensatory scanning training can induce performance-enhancing scanning behaviour.

4.
IEEE Trans Biomed Eng ; 70(10): 2933-2942, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37104106

RESUMEN

OBJECTIVE: We present a novel framework for the detection and continuous evaluation of 3D motion perception by deploying a virtual reality environment with built-in eye tracking. METHODS: We created a biologically-motivated virtual scene that involved a ball moving in a restricted Gaussian random walk against a background of 1/f noise. Sixteen visually healthy participants were asked to follow the moving ball while their eye movements were monitored binocularly using the eye tracker. We calculated the convergence positions of their gaze in 3D using their fronto-parallel coordinates and linear least-squares optimization. Subsequently, to quantify 3D pursuit performance, we employed a first-order linear kernel analysis known as the Eye Movement Correlogram technique to separately analyze the horizontal, vertical and depth components of the eye movements. Finally, we checked the robustness of our method by adding systematic and variable noise to the gaze directions and re-evaluating 3D pursuit performance. RESULTS: We found that the pursuit performance in the motion-through depth component was reduced significantly compared to that for fronto-parallel motion components. We found that our technique was robust in evaluating 3D motion perception, even when systematic and variable noise was added to the gaze directions. CONCLUSION: The proposed framework enables the assessment of 3D Motion perception by evaluating continuous pursuit performance through eye-tracking. SIGNIFICANCE: Our framework paves the way for a rapid, standardized and intuitive assessment of 3D motion perception in patients with various eye disorders.


Asunto(s)
Percepción de Movimiento , Realidad Virtual , Humanos , Movimientos Oculares , Movimiento (Física) , Caminata , Seguimiento Ocular Uniforme
5.
Schizophr Bull ; 49(12 Suppl 2): S68-S81, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36840543

RESUMEN

BACKGROUND AND HYPOTHESIS: Approximately one-third of patients with a psychotic disorder experience visual hallucinations (VH). While new, more targeted treatment options are warranted, the pathophysiology of VH remains largely unknown. Previous studies hypothesized that VH result from impaired functioning of the vision-related networks and impaired interaction between those networks, including a possible functional disconnection between the primary visual cortex (V1) and higher-order visual processing regions. Testing these hypotheses requires sufficient data on brain activation during actual VH, but such data are extremely scarce. STUDY DESIGN: We therefore recruited seven participants with a psychotic disorder who were scanned in a 3 T fMRI scanner while indicating the occurrence of VH by pressing a button. Following the scan session, we interviewed participants about the VH experienced during scanning. We then used the fMRI scans to identify regions with increased or decreased activity during VH periods versus baseline (no VH). STUDY RESULTS: In six participants, V1 was not activated during VH, and in one participant V1 showed decreased activation. All participants reported complex VH such as human-like beings, objects and/or animals, during which higher-order visual areas and regions belonging to the vision-related networks on attention and memory were activated. DISCUSSION: These results indicate that VH are associated with diffuse involvement of the vision-related networks, with the exception of V1. We therefore propose a model for the pathophysiology of psychotic VH in which a dissociation of higher-order visual processing areas from V1 biases conscious perception away from reality and towards internally generated percepts.


Asunto(s)
Corteza Visual Primaria , Trastornos Psicóticos , Humanos , Alucinaciones , Encéfalo , Imagen por Resonancia Magnética
6.
Sci Rep ; 12(1): 21981, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36539453

RESUMEN

The degree to which the adult human visual cortex retains the ability to functionally adapt to damage at the level of the eye remains ill-understood. Previous studies on cortical neuroplasticity primarily focused on the consequences of foveal visual field defects (VFD), yet these findings may not generalize to peripheral defects such as occur in glaucoma. Moreover, recent findings on neuroplasticity are often based on population receptive field (pRF) mapping, but interpreting these results is complicated in the absence of appropriate control conditions. Here, we used fMRI-based neural modeling to assess putative changes in pRFs associated with glaucomatous VFD. We compared the fMRI-signals and pRF in glaucoma participants to those of controls with case-matched simulated VFD. We found that the amplitude of the fMRI-signal is reduced in glaucoma compared to control participants and correlated with disease severity. Furthermore, while coarse retinotopic structure is maintained in all participants with glaucoma, we observed local pRF shifts and enlargements in early visual areas, relative to control participants. These differences suggest that the adult brain retains some degree of local neuroplasticity. This finding has translational relevance, as it is consistent with VFD masking, which prevents glaucoma patients from noticing their VFD and seeking timely treatment.


Asunto(s)
Glaucoma , Corteza Visual , Humanos , Adulto , Campos Visuales , Corteza Visual/diagnóstico por imagen , Pruebas del Campo Visual , Imagen por Resonancia Magnética/métodos , Mapeo Encefálico/métodos
7.
Neuroimage ; 264: 119688, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36280097

RESUMEN

The majority of neurons in the human brain process signals from neurons elsewhere in the brain. Connective Field (CF) modelling is a biologically-grounded method to describe this essential aspect of the brain's circuitry. It allows characterizing the response of a population of neurons in terms of the activity in another part of the brain. CF modelling translates the concept of the receptive field (RF) into the domain of connectivity by assessing, at the voxel level, the spatial dependency between signals in distinct cortical visual field areas. Thus, the approach enables to characterize the functional cortical circuitry of the human cortex. While already very useful, the present CF modelling approach has some intrinsic limitations due to the fact that it only estimates the model's explained variance and not the probability distribution associated with the estimated parameters. If we could resolve this, CF modelling would lend itself much better for statistical comparisons at the level of single voxels and individuals. This is important when trying to gain a detailed understanding of the neurobiology and pathophysiology of the visual cortex, notably in rare cases. To enable this, we present a Bayesian approach to CF modeling (bCF). Using a Markov Chain Monte Carlo (MCMC) procedure, it estimates the posterior probability distribution underlying the CF parameters. Based on this, bCF quantifies, at the voxel level, the uncertainty associated with each parameter estimate. This information can be used in various ways to increase confidence in the CF model predictions. We applied bCF to BOLD responses recorded in the early human visual cortex using 3T fMRI. We estimated both the CF parameters and their associated uncertainties and show they are only weakly correlated. Moreover, we show how bCF facilitates the use of effect size (beta) as a data-driven parameter that can be used to select the most reliable voxels for further analysis. Finally, to further illustrate the functionality gained by bCF, we apply it to perform a voxel-level comparison of a single, circular symmetric, Gaussian versus a Difference-of-Gaussian model. We conclude that our bCF framework provides a comprehensive tool to study human functional cortical circuitry in health and disease.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Humanos , Cadenas de Markov , Teorema de Bayes , Método de Montecarlo
8.
Front Med (Lausanne) ; 8: 689910, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34746166

RESUMEN

Purpose: There is a need for more intuitive perimetric screening methods, which can also be performed by elderly people and children currently unable to perform standard automated perimetry (SAP). Ideally, these methods should also be easier to administer, such that they may be used outside of a regular clinical environment. We evaluated the suitability of various methodological and analytical approaches for detecting and localizing VFD in glaucoma patients, based on eye movement recordings. Methods: The present study consisted of two experiments. In experiment 1, we collected data from 20 glaucoma patients and 20 age-matched controls, who monocularly viewed 28 1-min video clips while their eyes were being tracked. In experiment 2, we re-analyzed a published dataset, that contained data of 44 glaucoma patients and 32 age-matched controls who had binocularly viewed three longer-duration (3, 5, and 7 min) video clips. For both experiments, we first examined if the two groups differed in the basic properties of their fixations and saccades. In addition, we computed the viewing priority (VP) of each participant. Following a previously reported approach, for each participant, we mapped their fixation locations and used kernel Principal Component Analysis (kPCA) to distinguish patients from controls. Finally, we attempted to reconstruct the location of a patient's VFD by mapping the relative fixation frequency and the VP across their visual field. Results: We found direction dependent saccade amplitudes in glaucoma patients that often differed from those of the controls. Moreover, the kPCA indicated that the fixation maps of the two groups separated into two clusters based on the first two principal components. On average, glaucoma patients had a significantly lower VP than the controls, with this decrease depending on the specific video viewed. Conclusions: It is possible to detect the presence of VFD in glaucoma patients based on their gaze behavior made during video viewing. While this corroborates earlier conclusions, we show that it requires participants to view the videos monocularly. Nevertheless, we could not reconstruct the VFD with any of the evaluated methods, possibly due to compensatory eye movements made by the glaucoma patients.

9.
Neuroimage ; 245: 118690, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34758382

RESUMEN

The visual brain has the remarkable capacity to complete our percept of the world even when the information extracted from the visual scene is incomplete. This ability to predict missing information based on information from spatially adjacent regions is an intriguing attribute of healthy vision. Yet, it gains particular significance when it masks the perceptual consequences of a retinal lesion, leaving patients unaware of their partial loss of vision and ultimately delaying diagnosis and treatment. At present, our understanding of the neural basis of this masking process is limited which hinders both quantitative modeling as well as translational application. To overcome this, we asked the participants to view visual stimuli with and without superimposed artificial scotoma (AS). We used fMRI to record the associated cortical activity and applied model-based analyzes to track changes in cortical population receptive fields and connectivity in response to the introduction of the AS. We found that throughout the visual field and cortical hierarchy, pRFs shifted their preferred position towards the AS border. Moreover, extrastriate areas biased their sampling of V1 towards sections outside the AS projection zone, thereby effectively masking the AS with signals from spared portions of the visual field. We speculate that the signals that drive these system-wide population modifications originate in extrastriate visual areas and, through feedback, also reconfigure the neural populations in the earlier visual areas.


Asunto(s)
Imagen por Resonancia Magnética , Escotoma/fisiopatología , Corteza Visual/anatomía & histología , Corteza Visual/fisiología , Adulto , Mapeo Encefálico , Femenino , Humanos , Masculino , Estimulación Luminosa
10.
Trends Hear ; 25: 23312165211045306, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34617829

RESUMEN

Since emotion recognition involves integration of the visual and auditory signals, it is likely that sensory impairments worsen emotion recognition. In emotion recognition, young adults can compensate for unimodal sensory degradations if the other modality is intact. However, most sensory impairments occur in the elderly population and it is unknown whether older adults are similarly capable of compensating for signal degradations. As a step towards studying potential effects of real sensory impairments, this study examined how degraded signals affect emotion recognition in older adults with normal hearing and vision. The degradations were designed to approximate some aspects of sensory impairments. Besides emotion recognition accuracy, we recorded eye movements to capture perceptual strategies for emotion recognition. Overall, older adults were as good as younger adults at integrating auditory and visual information and at compensating for degraded signals. However, accuracy was lower overall for older adults, indicating that aging leads to a general decrease in emotion recognition. In addition to decreased accuracy, older adults showed smaller adaptations of perceptual strategies in response to video degradations. Concluding, this study showed that emotion recognition declines with age, but that integration and compensation abilities are retained. In addition, we speculate that the reduced ability of older adults to adapt their perceptual strategies may be related to the increased time it takes them to direct their attention to scene aspects that are relatively far away from fixation.


Asunto(s)
Percepción del Habla , Anciano , Envejecimiento , Emociones , Movimientos Oculares , Humanos , Adulto Joven
11.
Front Neurosci ; 15: 745355, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34690682

RESUMEN

Standard automated perimetry (SAP) is the gold standard for evaluating the presence of visual field defects (VFDs). Nevertheless, it has requirements such as prolonged attention, stable fixation, and a need for a motor response that limit application in various patient groups. Therefore, a novel approach using eye movements (EMs) - as a complementary technique to SAP - was developed and tested in clinical settings by our group. However, the original method uses a screen-based eye-tracker which still requires participants to keep their chin and head stable. Virtual reality (VR) has shown much promise in ophthalmic diagnostics - especially in terms of freedom of head movement and precise control over experimental settings, besides being portable. In this study, we set out to see if patients can be screened for VFDs based on their EM in a VR-based framework and if they are comparable to the screen-based eyetracker. Moreover, we wanted to know if this framework can provide an effective and enjoyable user experience (UX) compared to our previous approach and the conventional SAP. Therefore, we first modified our method and implemented it on a VR head-mounted device with built-in eye tracking. Subsequently, 15 controls naïve to SAP, 15 patients with a neuro-ophthalmological disorder, and 15 glaucoma patients performed three tasks in a counterbalanced manner: (1) a visual tracking task on the VR headset while their EM was recorded, (2) the preceding tracking task but on a conventional screen-based eye tracker, and (3) SAP. We then quantified the spatio-temporal properties (STP) of the EM of each group using a cross-correlogram analysis. Finally, we evaluated the human-computer interaction (HCI) aspects of the participants in the three methods using a user-experience questionnaire. We find that: (1) the VR framework can distinguish the participants according to their oculomotor characteristics; (2) the STP of the VR framework are similar to those from the screen-based eye tracker; and (3) participants from all the groups found the VR-screening test to be the most attractive. Thus, we conclude that the EM-based approach implemented in VR can be a user-friendly and portable companion to complement existing perimetric techniques in ophthalmic clinics.

12.
Front Hum Neurosci ; 15: 713114, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34447301

RESUMEN

PURPOSE: A stroke that includes the primary visual cortex unilaterally leads to a loss of visual field (VF) representation in the hemifield contralateral to the damage. While behavioral procedures for measuring the VF, such as perimetry, may indicate that a patient cannot see in a particular area, detailed psychophysical testing often detects the ability to perform detection or discrimination of visual stimuli ("blindsight"). The aim of this study was to determine whether functional magnetic resonance imaging (fMRI) could be used to determine whether perimetrically blind regions of the VF were still represented in VF maps reconstructed on the basis of visually evoked neural activity. METHODS: Thirteen patients with hemianopia and nine control participants were scanned using 3T MRI while presented with visual stimulation. Two runs of a dynamic "wedge and ring" mapping stimulus, totaling approximately 10 min, were performed while participants fixated centrally. Two different analysis approaches were taken: the conventional population receptive field (pRF) analysis and micro-probing (MP). The latter is a variant of the former that makes fewer assumptions when modeling the visually evoked neural activity. Both methods were used to reconstruct the VF by projecting modeled activity back onto the VF. Following a normalization step, these "coverage maps" can be compared to the VF sensitivity plots obtained using perimetry. RESULTS: While both fMRI-based approaches revealed regions of neural activity within the perimetrically "blind" sections of the VF, the MP approach uncovered more voxels in the lesioned hemisphere in which a modest degree of visual sensitivity was retained. Furthermore, MP-based analysis indicated that both early (V1/V2) and extrastriate visual areas contributed equally to the retained sensitivity in both patients and controls. CONCLUSION: In hemianopic patients, fMRI-based approaches for reconstructing the VF can pick up activity in perimetrically blind regions of the VF. Such regions of the VF may be particularly amenable for rehabilitation to regain visual function. Compared to conventional pRF modeling, MP reveals more voxels with retained visual sensitivity, suggesting it is a more sensitive approach for VF reconstruction.

13.
Front Neurosci ; 15: 650540, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33994927

RESUMEN

The measurement of retinal sensitivity at different visual field locations-perimetry-is a fundamental procedure in ophthalmology. The most common technique for this scope, the Standard Automated Perimetry, suffers from several issues that make it less suitable to test specific clinical populations: it can be tedious, it requires motor manual feedback, and requires from the patient high levels of compliance. Previous studies attempted to create user-friendlier alternatives to Standard Automated Perimetry by employing eye movements reaction times as a substitute for manual responses while keeping the fixed-grid stimuli presentation typical of Standard Automated Perimetry. This approach, however, does not take advantage of the high spatial and temporal resolution enabled by the use of eye-tracking. In this study, we introduce a novel eye-tracking method to perform high-resolution perimetry. This method is based on the continuous gaze-tracking of a stimulus moving along a pseudo-random walk interleaved with saccadic jumps. We then propose two computational methods to obtain visual field maps from the continuous gaze-tracking data: the first is based on the spatio-temporal integration of ocular positional deviations using the threshold free cluster enhancement (TFCE) algorithm; the second is based on using simulated visual field defects to train a deep recurrent neural network (RNN). These two methods have complementary qualities: the TFCE is neurophysiologically plausible and its output significantly correlates with Standard Automated Perimetry performed with the Humphrey Field Analyzer, while the RNN accuracy significantly outperformed the TFCE in reconstructing the simulated scotomas but did not translate as well to the clinical data from glaucoma patients. While both of these methods require further optimization, they show the potential for a more patient-friendly alternative to Standard Automated Perimetry.

14.
Transl Vis Sci Technol ; 10(2): 1, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-34003886

RESUMEN

Purpose: Assessing the presence of visual field defects (VFD) through procedures such as perimetry is an essential aspect of the management and diagnosis of ocular disorders. However, even the latest perimetric methods have shortcomings-a high cognitive demand and requiring prolonged stable fixation and feedback through a button response. Consequently, an approach using eye movements (EM)-as a natural response-has been proposed as an alternate way to evaluate the presence of VFD. This approach has given good results for computer-simulated VFD. However, its use in patients is not well documented yet. Here we use this new approach to quantify the spatiotemporal properties (STP) of EM of various patients suffering from glaucoma and neuro-ophthalmological VFD and controls. Methods: In total, 15 glaucoma patients, 37 patients with a neuro-ophthalmological disorder, and 21 controls performed a visual tracking task while their EM were being recorded. Subsequently, the STP of EM were quantified using a cross-correlogram analysis. Decision trees were used to identify the relevant STP and classify the populations. Results: We achieved a classification accuracy of 94.5% (TPR/sensitivity = 96%, TNR/specificity = 90%) between patients and controls. Individually, the algorithm achieved an accuracy of 86.3% (TPR for neuro-ophthalmology [97%], glaucoma [60%], and controls [86%]). The STP of EM were highly similar across two different control cohorts. Conclusions: In an ocular tracking task, patients with VFD due to different underlying pathology make EM with distinctive STP. These properties are interpretable based on different clinical characteristics of patients and can be used for patient classification. Translational Relevance: Our EM-based screening tool may complement existing perimetric techniques in clinical practice.


Asunto(s)
Glaucoma , Pruebas del Campo Visual , Movimientos Oculares , Glaucoma/complicaciones , Humanos , Trastornos de la Visión/diagnóstico , Campos Visuales
15.
Front Hum Neurosci ; 15: 630898, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33854423

RESUMEN

Background: Primary open-angle glaucoma (POAG) patients exhibit widespread white matter (WM) degeneration throughout their visual pathways. Whether this degeneration starts at the pre- or post-geniculate pathways remains unclear. In this longitudinal study, we assess the progression of WM degeneration exhibited by the pre-geniculate optic tracts (OTs) and the post-geniculate optic radiations (ORs) of POAG patients over time, aiming to determine the source and pattern of spread of this degeneration. Methods: Diffusion-weighted MRI scans were acquired for 12 POAG patients and 14 controls at two time-points 5.4 ± 2.1 years apart. Fiber density (FD), an estimate of WM axonal density, was computed for the OTs and ORs of all participants in an unbiased longitudinal population template space. First, FD was compared between POAG patients and the controls at time-point 1 (TP1) and time-point 2 (TP2) independently. Secondly, repeated measures analysis was performed for FD change in POAG patients between the two time-points. Finally, we compared the rate of FD change over time between the two groups. Results: Compared to the controls, POAG patients exhibited significantly lower FD in the left OT at TP1 and in both OTs and the left OR at TP2. POAG patients showed a significant loss of FD between the time-points in the right OT and both ORs, while the left OR showed a significantly higher rate of FD loss in POAG patients compared to the controls. Conclusions: We find longitudinal progression of neurodegenerative WM changes in both the pre- and post-geniculate visual pathways of POAG patients. The pattern of changes suggests that glaucomatous WM degeneration starts at the pre-geniculate pathways and then spreads to the post-geniculate pathways. Furthermore, we find evidence that the trans-synaptic spread of glaucomatous degeneration to the post-geniculate pathways is a prolonged process which continues in the absence of detectable pre-geniculate degenerative progression. This suggests the presence of a time window for salvaging intact post-geniculate pathways, which could prove to be a viable therapeutic target in the future.

16.
Sci Rep ; 11(1): 6866, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33767217

RESUMEN

The degree to which glaucoma has effects in the brain beyond the eye and the visual pathways is unclear. To clarify this, we investigated white matter microstructure (WMM) in 37 tracts of patients with glaucoma, monocular blindness, and controls. We used brainlife.io for reproducibility. White matter tracts were subdivided into seven categories ranging from those primarily involved in vision (the visual white matter) to those primarily involved in cognition and motor control. In the vision tracts, WMM was decreased as measured by fractional anisotropy in both glaucoma and monocular blind subjects compared to controls, suggesting neurodegeneration due to reduced sensory inputs. A test-retest approach was used to validate these results. The pattern of results was different in monocular blind subjects, where WMM properties increased outside the visual white matter as compared to controls. This pattern of results suggests that whereas in the monocular blind loss of visual input might promote white matter reorganization outside of the early visual system, such reorganization might be reduced or absent in glaucoma. The results provide indirect evidence that in glaucoma unknown factors might limit the reorganization as seen in other patient groups following visual loss.


Asunto(s)
Ceguera/fisiopatología , Glaucoma/fisiopatología , Sustancia Gris/patología , Tracto Óptico/patología , Vías Visuales/patología , Sustancia Blanca/patología , Anisotropía , Estudios de Casos y Controles , Imagen de Difusión Tensora , Femenino , Humanos , Masculino , Persona de Mediana Edad
17.
Front Neurosci ; 15: 625309, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33692669

RESUMEN

Connective Field (CF) modeling estimates the local spatial integration between signals in distinct cortical visual field areas. As we have shown previously using 7T data, CF can reveal the visuotopic organization of visual cortical areas even when applied to BOLD activity recorded in the absence of external stimulation. This indicates that CF modeling can be used to evaluate cortical processing in participants in which the visual input may be compromised. Furthermore, by using Bayesian CF modeling it is possible to estimate the co-variability of the parameter estimates and therefore, apply CF modeling to single cases. However, no previous studies evaluated the (Bayesian) CF model using 3T resting-state fMRI data. This is important since 3T scanners are much more abundant and more often used in clinical research compared to 7T scanners. Therefore in this study, we investigate whether it is possible to obtain meaningful CF estimates from 3T resting state (RS) fMRI data. To do so, we applied the standard and Bayesian CF modeling approaches on two RS scans, which were separated by the acquisition of visual field mapping data in 12 healthy participants. Our results show good agreement between RS- and visual field (VF)- based maps using either the standard or Bayesian CF approach. In addition to quantify the uncertainty associated with each estimate in both RS and VF data, we applied our Bayesian CF framework to provide the underlying marginal distribution of the CF parameters. Finally, we show how an additional CF parameter, beta, can be used as a data-driven threshold on the RS data to further improve CF estimates. We conclude that Bayesian CF modeling can characterize local functional connectivity between visual cortical areas from RS data at 3T. Moreover, observations obtained using 3T scanners were qualitatively similar to those reported for 7T. In particular, we expect the ability to assess parameter uncertainty in individual participants will be important for future clinical studies.

18.
Transl Vis Sci Technol ; 10(1): 25, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33520421

RESUMEN

Purpose: To evaluate the accuracy and reliability of functional magnetic resonance imaging (fMRI)-based techniques to assess the integrity of the visual field (VF). Methods: We combined 3T fMRI and neurocomputational models, that is, conventional population receptive field (pRF) mapping and a new advanced pRF framework "microprobing" (MP), to reconstruct the VF representations of different cortical areas. To demonstrate their scope, both approaches were applied in healthy participants with simulated scotomas and participants with glaucoma. For the latter group we compared the VFs obtained with standard automated perimetry (SAP) and via fMRI. Results: Using SS, we found that the fMRI-based techniques can detect absolute defects in VFs that are larger than 3°, in single participants, based on 12 minutes of fMRI scan time. Moreover, we found that the MP approach results in a less biased estimation of the preserved VF. In participants with glaucoma, we found that fMRI-based VF reconstruction detected VF defects with a correspondence to SAP that was decent, reflected by the positive correlation between fMRI-based sampling density and SAP-based contrast sensitivity loss (SAP) r2 = 0.44, P = 0.0002. This correlation was higher for MP compared to that for the conventional pRF analysis. Conclusions: The fMRI-based reconstruction of the VF enables the evaluation of vision loss and provides useful details on the properties of the visual cortex. Translational Relevance: The fMRI-based VF reconstruction provides an objective alternative to detect VF defects. It may either complement SAP or could provide VF information in patients unable to perform SAP.


Asunto(s)
Glaucoma , Campos Visuales , Glaucoma/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Reproducibilidad de los Resultados , Pruebas del Campo Visual
20.
Front Aging Neurosci ; 13: 744139, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35095465

RESUMEN

In glaucoma participants, both structural and functional brain changes have been observed, but we still have insufficient understanding of how these changes also affect the integrity of cortical functional networks, and how these changes relate to visual function. This is relevant, as functional network integrity may affect the applicability of future treatments, as well as the options for rehabilitation or training. Here, we compare global and local functional connectivity in local and global brain networks between glaucoma and control participants. Moreover, we study the relationship between functional connectivity and visual field (VF) loss. For our study, 20 subjects with primary open-angle glaucoma (POAG) and 24 age-similar healthy participants were recruited to undergo an ophthalmic assessment followed by two resting-state (RS) (f)MRI scans. For each scan and for each group, the ROIs with eigenvector centrality (EC) values higher than the 95th percentile were considered the most central brain regions ("hubs"). Hubs for which we found a significant difference in EC in both scans between glaucoma and healthy participants were considered to provide evidence for network changes. In addition, we tested the notion that a brain region's hub function in POAG might relate to the severity of a participant's VF defect, irrespective of which eye contributed mostly to this. To determine this, for each participant, eye-independent scores were derived for: (1) sensitivity of the worse eye - indicating disease severity, (2) sensitivity of both eyes combined - with one eye potentially compensating for loss in the other, or (3) difference in eye sensitivity - potentially requiring additional network interactions. By correlating each of these VF scores and the EC values, we assessed whether VF defects could be associated with centrality alterations in POAG. Our results show that no functional connectivity disruptions were found at the global brain level in POAG participants. This indicates that in glaucoma global brain network communication is preserved. Furthermore, for the Lingual Gyrus, identified as a brain hub, we found a positive correlation between the EC value and the VF sensitivity of both eyes combined. The fact that reduced local network functioning is associated with reduced binocular VF sensitivity suggests the presence of local brain reorganization that has a bearing on functional visual abilities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...